
of levers; an additional lever increases the and friction. For special research and for emonstration a still higher magnification sary, and this I secured by the invention Magnetic Crescograph, where a fine maglever causes by its movement a rotation

3.—Record showing the effect of carbonic acid gas. Horizontal line at the beginning indicates balanced growth. Application of carbonic acid gas induces enhancement of growth, shown by up-curve, followed by depression, exhibited by down-curve. Successive dots at intervals of ten seconds.

ispended system of astatic needle with its ed mirror. By graduated approach of the nded needle to the lever the magnification, e continuously increased from a million to illion times. A concrete idea of the stupenmagnification will be obtained if we imagine

the slow pace of the proverbial snail magnified ten million times. The 15-in. gun of the Queen Elizabeth throws out a shell with a muzzle-velocity of 2360 ft. per sec., but the crescographic snail would move twenty-four times faster than the cannon shot. The magnification of ten million times was obtained with a single lever, but a double lever will enlarge it a hundredfold-that is to say, it will give a total magnification of a thousand million times. The importance of this device for research in other branches of science is sufficiently obvious. For general purposes a magnification of a million times is sufficient; with ordinary precaution the apparatus may be rendered free from mechanical disturbance, and the zero-keeping quality of the indicating spot of light' is quite perfect.

The following account of an experiment in demonstration of physiological response in a growing plant will be found interesting. normal growth of the plant was indicated by the excursion of the spot of light through 6 metres in 10 secs. On introduction of chloroform vapour to the plant-chamber there was an immediate enhancement of the rate of growth, the spot of light moving three times faster. Continued action of the vapour of chloroform caused, however, a depression and arrest of growth; finally, there was a sudden contraction, which proved to be the spasm of death. Similar effects were produced by various poisons like the solution of potassium

cyanide.

After this brief account of the very sensitive methods for the detection and record of the effect of stimulus on growth, I propose in another article to describe results which will offer an explanation of the tropic movements in plants induced by various stimuli of the environment.

Isotopes and Atomic Weights.

By Dr. F. W. Aston.

the atomic theory put forward by John Dalton in 1801 the second postulate was: "Atoms of ame element are similar to one another and I in weight." For more than a century this regarded by chemists and physicists alike as rticle of scientific faith. The only item among Immense quantities of knowledge acquired ng that productive period which offered the atest suggestion against its validity was the plicable mixture of order and disorder among elementary atomic weights. The general state opinion at the end of last century may be hered from the two following quotations from William Ramsay's address to the British Assotion at Toronto in 1897:-

here have been almost innumerable attempts to the differences between atomic weights to sularity by contriving some formula which will press the numbers which represent the atomic ghts with all their irregularities. Needless to say, attempts have in no case been successful. Apparent success is always attained at the expense of accuracy, and the numbers reproduced are not those accepted as the true atomic weights. Such attempts, in my opinion, are futile. Still, the human mind does not rest contented in merely chronicling such an irregularity; it strives to understand why such an irregularity should exist. . . The idea . . . has been advanced by Prof. Schutzenburger, and later by Mr. Crookes, that what we term the atomic weight of an element is a mean; that when we say the atomic weight of oxygen is 16, we merely state that the average atomic weight is 16; and it is not inconceivable that a certain number of molecules have a weight somewhat higher than 32, while a certain number have a lower weight.

This idea was placed on an altogether different footing some ten years later by the work of Sir Ernest Rutherford and his colleagues on radioactive transformations. The results of these led inevitably to the conclusion that there must exist elements which have chemical properties identical for all practical purposes, but the atoms of

NO. 2646, VOL. 105

which have different weights. This conclusion has been recently confirmed in a most convincing manner by the production in quantity of specimens of lead from radio-active and other sources, which, though perfectly pure and chemically indistinguishable, give atomic weights differing by amounts quite outside the possible experimental error. Elements differing in mass but chemically identical and therefore occupying the same position in the periodic table have been called "isotopes" by Prof. Soddy.

At about the same period as the theory of isotopes was being developed by the radio chemists at the heavy end of the periodic table an extremely interesting discovery was made by Sir J. J. Thomson, which carried the attack into the region of the lighter and non-radio-active elements. This was that, when positive rays from gases containing the element neon were analysed by electric and magnetic fields, results were obtained which indicated atomic weights roughly 20

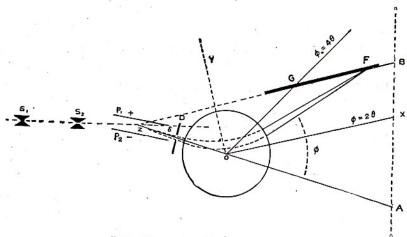


Fig. 1.-Diagram of positive-ray spectrograph.

and 22 respectively, the accepted atomic weight being 20.2. This naturally led to the expectation that neon might be a mixture of isotopes, but the weight 22 might possibly be due to other causes, and the method of analysis did not give sufficient accuracy to distinguish between 20.0 and 20.2 with certainty. Attempts were made to effect partial separation first by fractionation over charcoal cooled in liquid air, the results of which were absolutely negative, and then by diffusion, which in 1913 gave positive results, an apparent change in density of 0.7 per cent. between the lightest and heaviest fractions being attained after many thousands of operations. When the war interrupted the research, it might be said that several independent lines of reasoning pointed to the idea that neon was a mixture of isotopes, but that none of them could be said to carry the conviction necessary in such an important develop-

By the time work was started again the isotope theory had been generally accepted so far as the

NO. 2646, VOL. 105]

radio-active elements were concerned, and a goo deal of theoretical speculation had been made to its applicability to the elements generally. separation by diffusion is at the best extreme slow and laborious, attention was again turn to positive rays in the hope of increasing the accuracy of measurements to the required degree This was done by means of the arrangement illustrated in Fig. 1. Positive rays are some into an extremely thin ribbon by means of parallal slits S1 S2, and are then spread into an electric spectrum by means of the charged plates P A portion of this spectrum deflected through angle θ is selected by the diaphragm D and passed between the circular poles of a powerful electro magnet O the field of which is such as to bear the rays back again through an angle \$\phi\$ more than twice as great as θ . The result of this is that rays having a constant mass (or more cor rectly constant m/e) will converge to a focus R and that if a photographic plate is placed at Gr

as indicated, a spectrum dependent on mass alone will be obtained. On account of its analogy to optical apparatus, the instrument has been called a positive-ray spectrograph and the spectrum produced a mass-spectrum.

Fig. 2 shows a number of typical mass-spectra obtained by this means. The number above the lines indicates the masses they correspond to on the scale O = 16. It will be noticed that the displacement to the right with increasing mass is roughly linear. The measurements of mass made are not absolute, but relative to lines the mass of which is known. Such lines, due to

hydrogen, carbon, oxygen, and their compounds, are generally present as impurities or purposely added, for pure gases are not suitable for the smooth working of the discharge tube. The two principal groups of these reference lines are the C₁ group due to C (12), CH (13), CH₂ (14), CH₃ (15), CH₄ or O (16), and the C₂ group 24–30 containing the very strong line 28 C₂H₄ or CO. In spectrum i. the presence of neon is indicated by the lines 20 and 22 situated between these groups. Comparative measurements show that these lines are 20-00, 22-00, with an accuracy of one-tenth per cent. Which removes the last doubt as to the isotopic nature of neon.

The next element investigated was chlorine; this is characterised by four strong lines 35, 36, 37, 38, and fainter ones at 39, 40; there is no trace of a line at 35.46, the accepted atomic weight. From reasoning which cannot be given here in detail it seems certain that chlorine is a complex element, and consists of isotopes of atomic weights 35 and

with possibly another at 39. The lines at

38 are due to the corresponding HCl's. Particles with two, three, or more electronic barges will appear as though having half, a hird, etc., their real mass. The corresponding mes are called lines of the second, third, or her order. In spectrum ii. the lines of doubly harged chlorine atoms appear at 17.5 and 18.5. malyses of argon indicate that this element consts almost entirely of atoms of weight 40, but a int component 36 is also visible. Spectra v. and are taken with this gas present; the former shows the interesting third order line at 13\frac{1}{3}.

Krypton and xenon give surprisingly complex method (see Phil. Mag., May, 1920, p. 621), some results of which are given in spectrum vii., hydrogen is found to be 1.008, which agrees with the value accepted by chemists. This exception from the whole number rule is not unexpected, as on the Rutherford "nucleus" theory the hydrogen atom is the only one not containing any negative electricity in its nucleus.

The results which have so far been obtained with eighteen elements make it highly probable that the higher the atomic weight of an element, the more complex it is likely to be, and that there are more complex elements than simple. It must be noticed that, though the whole number rule

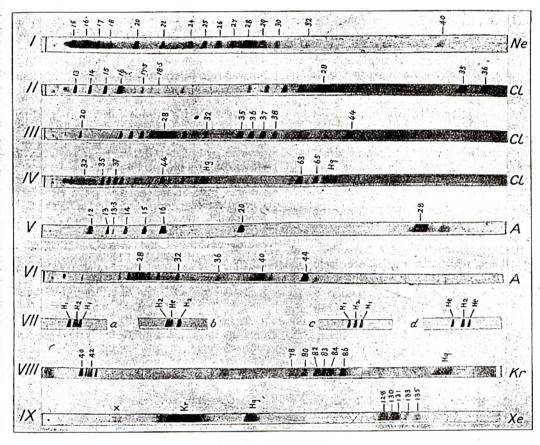


Fig. 2.-Typical mass-spectra.

results; the former is found to consist of no fewer than six isotopes, the latter of five (spectra viii. and ix.). Mercury is certainly a complex element probably composed of five or six isotopes, two of which have weights 202 and 204; its multiply charged atoms give the imperfectly resolved groups, which are indicated in several of the spectra reproduced in Fig. 2.

By far the most important result obtained from this work is the generalisation that, with the exception of hydrogen, all the atomic weights of all elements so far measured are exactly whole numbers on the scale O=16 to the accuracy of experiment (1 in 1000). By means of a special

NO. 2646. VOL. 105

asserts that a pure element must have a whole number atomic weight, there is no reason to suppose that all elements having atomic weights closely approximating to integers are therefore pure.

The very large number of different molecules possible when mixed elements unite to form compounds would appear to make their theoretical chemistry almost hopelessly complicated, but if, as seems likely, the separation of isotopes on any reasonable scale is to all intents impossible, their practical chemistry will not be affected, while the whole number rule introduces a very desirable simplification into the theoretical aspects of